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Continuing progress in research in molecular biology and
biomechanics has provided considerable new information
and has given rise to new hypotheses in chronic tendino-
pathy. Overloading is still, however, crucial in the develop-
ment of tendinopathy. Most of the histologic findings in
tendinopathy represent chronic degeneration, regeneration,
and microtears of the tendinous tissue. The prevailing
opinion is that no histological evidence of acute inflamma-
tion has been documented, but in newer studies using
immunohistochemistry and flow cytometry inflammatory
cells have been detected. The existing data indicate that
the initiators of the tendinopathic pathway include many
proinflammatory agents (e.g. cytokines, prostaglandins,

different growth factors, and neuropetides). Because of the
complex interaction between the classic proinflammatory
agents and the neuropeptides, it seems impossible and
somewhat irrelevant to distinguish sharply between chemi-
cal and neurogenic inflammation. Furthermore, glucocorti-
coids are, at the moment, the most effective treatment in
tendinopathy with regard to reduction of pain, tendon
thickness, and neovascularization. This review indicates –
despite a great deal of uncertainty regarding the concepts –
that an inflammatory process may be related not only to the
development of tendinopathy but also chronic tendinopathy.
More attention should be directed towards the ‘‘tendinitis
myth’’ in the future.

Chronic tendon pain in Achilles and patella tendons is
very common. In the general population, the lifetime
cumulative incidence of Achilles tendinopathy is 5.9%
among sedentary people and 50% among elite endur-
ance athletes (Kujala et al., 2005), and the overall
prevalence of patellar tendinopathy in an athletic po-
pulation has been reported to be in the range of 7–40%
(Kujala et al., 1986; Lian et al., 2005). Despite the
frequency, there are still many unsolved questions and
differences of opinion concerning pathology, pain me-
chanisms, etiology, and even terminology.
A few years ago, the pain in chronic tendon overuse

was believed to be due to a chronic inflammatory
process, but because no inflammatory cells could be
demonstrated in ruptured tendons, the opinion chan-
ged from inflammation (‘‘tendinitis’’) to degeneration
(‘‘tendinosis’’). A large amount of scientific data have
so far not shown any direct evidence of inflammation
in chronic tendinopathy (Jozsa et al., 1990; Kannus
& Józsa, 1991; Astrom & Rausing, 1995; Movin et al.,
1997b; Alfredson et al., 1999, 2003a; Khan et al.,
1999; Alfredson & Lorentzon, 2002). Today, most
authors have even abandoned the ‘‘tendinitis myth’’
(Khan et al., 1999, 2002; Alfredson, 2004). In a recent
study (Fredberg et al., 2004), however, a significant

reduction in pain and tendon thickening measured by
ultrasonography (US) and an increased pain detec-
tion threshold measured by pressure algometry were
found only 1 week after administration of ultra-
sound-guided peritendinous corticosteroid injections
in chronic Achilles and patella tendinopathy. These
changes induced by corticosteroids are difficult to
explain if the process is degenerative. The time frame
is too short to expect that the corticosteroids could
have influenced processes normally connected with
degeneration of connective tissue, such as collagen
synthesis, fibroblast migration, etc., which are pro-
cesses that normally change slowly. Although the
effect of the injected corticosteroid might be chemical
or mediated through vasoconstriction and thereby
hypoxia of the accompanying nerves, the dramatic
effect could obviously be explained by the anti-
inflammatory effect of the corticosteroid.

Terminology

The ‘‘peritendon’’ is the loose tissue surrounding the
tendon, and it consists of the ‘‘epitenon’’ and the
‘‘paratenon’’ (Kirkendall & Garret, 1997) (see Fig. 1).
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In tendons without a synovial sheath, the epitenon
is tightly bound to the tendon. Generally, ‘‘tendinitis’’
(or ‘‘tendonitis’’) is primarily used as a histopatholo-
gic term describing a condition in which the primary
site of involvement is the tendon and with an inflam-
matory response being seen within the tendon
(Järvinen et al., 1997; Sharma & Maffulli, 2006). The
condition is often associated with reactive ‘‘parateno-
nitis’’ or ‘‘peritendinitis,’’ which is an inflammation of
the paratenon (Järvinen et al., 1997). ‘‘Tendinosis’’ is
not correlated with clinical symptoms (Peers & Ly-
sens, 2005), but it has been widely used for patients
with chronic tendon pain, and with biopsy, radio-
graphic, ultrasonographic, or magnetic resonance
imaging (MRI) showing tendon abnormalities
(Khan et al., 1999; Alfredson, 2003). Today, ‘‘tendi-
nosis’’ is primarily used to describe a histopathologic
finding with intratendinous degeneration and no
sign of inflammation (Järvinen et al., 1997; Sharma &
Maffulli, 2006). ‘‘Tendinopathy’’ is used to signify the
combination of tendon pain and impaired perfor-
mance often associated with swelling of the tendon
and intratendinous changes (Alfredson, 2003, 2005)
evaluated by US or MRI. The diagnosis of tendino-
pathy can, in contrast to tendinitis and tendinosis, be
made clinically without histopathologic examination.
No specific time criteria are used to classify tendi-

nopathy as acute or chronic. It has been suggested
that tendon symptoms present for o2 weeks be
described as ‘‘acute,’’ for 2–6 weeks as ‘‘subacute,’’
and for more than 6 weeks as ‘‘chronic’’ (el Hawary
et al., 1997). These somewhat arbitrary distinctions
are not based on histopathologic or clinical criteria.
It is recommended that the term tendinopathy be

used as a clinical diagnosis for patients with pain
in the tendons. Tendinosis and tendinitis require a

biopsy showing degeneration or inflammation. If
symptoms are present for more than 3 months, the
tendinopathy is categorized as ‘‘chronic,’’ for symp-
toms present between 6 and 12 weeks as ‘‘subacute,’’
and for symptoms present between 0 and 6 weeks as
‘‘acute.’’

Diagnosis

Tendinopathy is characterized by the gradual onset
of morning stiffness in the tendon, decreased func-
tion, localized swelling, and sometimes neovascular-
ization (Khan et al., 1999; Boesen et al., 2006). Fibrin
precipitated from the fibrinogen-rich fluid around
the tendon can result in palpable crepitation (Jòzsa &
Kannus, 1997).
The diagnosis can be made clinically and is verifi-

able by US or MRI. The diagnosis tendinopathy is
mainly based on patient complaints (sensation of
pain) and palpation of the tendon, its surrounding
tissue, and its insertion, even though the clinical
diagnosis of Achilles (Maffulli et al., 2003) and
patellar tendinopathy (Cook et al., 2001), even in
experienced hands, is not straightforward, and ex-
perienced examiners may have problems in reprodu-
cing the results of clinical examination based on
simple tests (Maffulli et al., 2003). Many of the cases
were incorrectly diagnosed using only clinical exam-
ination (Fredberg et al., 2004), and in some cases
even total ruptures were misdiagnosed (Ljungqvist,
1967; Resnick et al., 1977; Shields, 1978; Siwek &
Rao, 1981; O’Brian, 1984; Ballas et al., 1998). Based
on these facts, US (or MRI) is recommended in all
cases of tendinopathy if shooting pain is present or if
there is no positive progress during treatment.

Fig. 1. Structure and model of a tendon (after Kirkendall & Garret, 1997).
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US is more accurate than MRI in confirming
clinically diagnosed patellar tendinopathy (Warden
et al., 2007). US has several significant advantages
over MRI: tissue with few mobile protons emits little
or no signal, and, therefore, the internal architecture
of the tendon is not well demonstrated with MRI. In
contrast, US shows the fine internal structure of
tendons, and US therefore pictures the anatomic
border of the tendon more precisely than does MRI
(Kamel et al., 2004). In agreement with this, the
‘‘standard deviation’’ and ‘‘range of the mean differ-
ence’’ from repeated measurement are less with US
than with MRI (Koivunen-Niemela & Parkkola,
1995). The US examination is interactive. The ex-
aminer is with the patient, and any site of reported
pain or tenderness can be directly correlated with its
real-time scan appearance. The ultrasonographer can
make use of the dynamic real-time character of US,
so that tendons can be studied throughout their
range of motion. Side-to-side comparison is always
available during the US examination. The spatial
resolution of US is much better than that of MRI
(Erickson, 1997). Furthermore, US can demonstrate
the neovascularization in tendinopathy. Today, US is
a well-established first-choice modality and is re-
garded as the examiner’s extended hand in daily
practice, which will never be the case for MRI, and
MRI has only a limited place in tendinopathy
(Richards et al., 2001; Shalabi et al., 2007).
In patients with chronic tendinopathy, US shows

thickening of the tendon, discontinuity of the fibers,
focal hypoechoic intratendinous areas, loss of fasci-
cle organization, intratendinous focal calcification,
partial or complete ruptures, and thickening of the
hypoechoic paratenon with poorly defined borders,
bursitis, and adherences between the epitenon and
paratenon (Gibbon et al., 2000; Blankstein et al.,
2001; Fornage, 2003), and the contours of the
tendon may be deformed with a bumpy appearance
(Fornage, 1993).

Histologically

In stark contrast to the glistening white normal
tendon, in symptomatic tendinopathy tendons ap-
pear gray or yellow-brown and amorphous to the
naked eye, and microscopy reveals discontinuous
and disorganized collagen fibers that lack reflectivity
under polarized light (Karlsson et al., 1992; Raati-
kainen et al., 1994; Khan et al., 1999).
Compared with normal tendons, the characteristic

features of tendinopathy under light microscopy are
(A) disrupted collagen, and the collagen fibers are
thinner than normal and the characteristic hierarch-
ical structure is lost (Åstrøm & Rausing, 1995), (B)
increased ground substance with a high concentra-

tion of glycosaminoglycans (Movin et al., 1997a), (C)
more prominent and numerous tenocytes without
their normal, fine spindle shape, and with more
rounded nuclei (Colosimo & Bassett, 1990; Fritschy
& Wallensten, 1993), and (D) neovascularization as
seen on color and power Doppler US (Alfredson
et al., 2003b).
Histologic examination of specimens removed dur-

ing surgery for tendinopathy shows hypoxic degen-
eration (Kannus & Józsa, 1991), mucoid or myxoid
degeneration (Jòzsa & Kannus, 1997) and fibrinoid
necrosis (Jozsa et al., 1990; Khan et al., 1996), fatty
degeneration or tendolipomatosis (Kannus & Józsa,
1991), collagen degeneration (Cetti et al., 2003),
pseudocyst change (Ferretti et al., 1983), randomized
collagen with an irregular fiber structure and poor
fiber orientation and neovascularization and teno-
cyte infiltration (Kälebo et al., 1991; Astrom &
Rausing, 1995; Khan et al., 1999; Ohberg & Alfredson,
2002), tenocyte necrosis (Cetti et al., 2003), micro-
tears of the tendinous tissue (Cook et al., 1997),
chronic inflammatory cell infiltration (Mourad et al.,
1988; Raatikainen et al., 1994), acute inflammation
(Cetti et al., 2003), granulation tissue (Kälebo et al.,
1991), small foci with iron-positive hemosidero-
phages (Schubert et al., 2005), focal degeneration
near the bone–tendon insertion (Raatikainen et al.,
1994), hyalin degeneration and fibrocartilagionous
and bony metaplasia (Myllymaki et al., 1990), calci-
fying tendinopathy (Kannus & Józsa, 1991), angiofi-
broblastic tendinosis (Yu et al., 1995), grayish
discoloration of ground substance, tendon edema,
and different combinations of these entities (Kannus
& Józsa, 1991; Jòzsa & Kannus, 1997; Paavola et al.,
2002).
Virtually every study of the pathology of Achilles

and patellar tendinopathy has reported that there
were more conspicuous and more numerous cells
than in healthy tendons and inflammatory cells
were absent. Most of these histologic findings above
represent

1. chronic degeneration (hypoxic degeneration,
mucoid or myxoid degeneration, fatty degenera-
tion, collagen degeneration, fibrinoid necrosis,
tenocyte necrosis, pseudocyst change, focal de-
generation, hyalin degeneration),

2. regeneration (neovascularization or angiofibro-
blastic tendinosis, tenocyte infiltration, chronic
and acute inflammation), and

3. microtears of the tendinous tissue (the positive
hemosiderophages).

The prevailing opinion is that no histological
evidence of acute inflammation has been documented
in ruptured tendons (Alfredson & Lorentzon, 2002;
Khan et al., 2002) or tendinopathic tendons under-
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going surgery (Benazzo et al., 1996; Cook et al.,
1997) or biopsies (Martinoli et al., 1993).
In a recent study (Cetti et al., 2003), however,

immunohistochemical staining confirmed acute in-
flammation in all of 60 ruptured Achilles tendons.
The neutrophils had a morphology reminiscent of
necrotic tenocytes, and their presence was confirmed
on immunohistochemical staining. Using monoclo-
nal antibodies (CD3 for detection of T lymphocytes,
CD 20 for detection pf B lymphocytes, and CD 68
for detection of macrophages), Schubert et al. (2005)
demonstrated that B and T lymphocytes and macro-
phages were increased in Achilles tendinopathy sam-
ples. These two studies need more confirmation.
Areas of altered collagen fiber structure and in-

creased interfibrillar ground substance, which has
been shown to consist of hydrophilic glucosamino-
glycans, in Achilles tendinopathy correspond to the
increased signal on MRI (Movin et al., 1998a) and
the hypoechogenic regions on US (Maffulli et al.,
1987; Movin et al., 1998b). Areas with increased
signals on MRI (Yu et al., 1995; Khan et al., 1996)
and granulomas and hypoechogenic regions on US
(Myllymaki et al., 1990; Maffulli et al., 1992) in
patellar tendinopathy appear to correspond to mu-
coid degeneration (Khan et al., 1996).

Biochemically

Several cell types in and around the tendon respond
to physical activity and can produce and respond to
many inflammatory mediators.
Endothelial cells can express and respond to a

network of inflammatory mediators, such as inter-
leukins, prostaglandins (PGE1, PGE2), and nitric
oxide (NO) (Scott et al., 2004).
Tendon cells subjected to cyclic strain increase the

production of:

� COX-2 (Wang et al., 2003) [which is not expressed
in resting connective tissue, but is induced by inter-
leukin-1 (IL-1) and tumor necrosis factor (TNF)],

� PGE2 (Almekinders et al., 1993, 1995; Wang et al.,
2003, 2004; Li et al., 2004),

� IL-6 (Skutek et al., 2003),

� IL-1 b [which results in increased production of
COX-2, matrix metalloproteinases (MMP-1, MMP-
3, MMP-13, which cause matrix destruction and a
loss of tendon biomechanical properties), PGE2,
intracellular calcium [which can lead to apoptosis
(Arnoczku et al., 2002)] and strongly downregulates
an apoptose-inhibitor gene, which could contribute
to increased cell death] (Archambault et al., 2002;
Tsuzaki et al., 2003; Banes et al., 2007),

� vascular endothelial growth factor (Senger et al.,
1983; Ferrara, 1999; Neufeld et al., 1999; Pufe et al.,

2005) [which are upregulated by inflammatory
cytokines and highly expressed in Achilles tendino-
pathy] (Pufe et al., 2001, 2005; Petersen et al., 2002),

� increase the expression level of cytosolic phospho-
lipase-A2 and activity level of secretory phospholi-
pase-A2 [which are involved in the production of
PGE2 and other inflammatory mediators] (Wang
et al., 2004), and

� increase activation of stress-activated protein kinase
(Arnoczku et al., 2002) [which is activated from pro-
inflammatory cytokines, indicating that this signal
pathway may contribute to the inflammatory re-
sponses] (Ip & Davis, 1998).

However, many of these investigations have used
non-physiologic strain patterns or the addition of
external factors to elicit these cell responses. Thus,
the clinical relevance of many of the studies must be
called into question.
COX-2 expression is usually low but can be

induced by numerous factors, including neurotrans-
mitters, growth factors, pro-inflammatory cytokines,
lipopolysaccharides, calcium, phorbol esters, and
small peptide hormones (O’Banion, 1999) and can
be reduced by glucocorticoids.
Tissue injury is associated with inflammation and

increased prostanoid synthesis and pain hypersensi-
tivity. Prostanoids influence inflammation and im-
mune responses, and their administration reproduces
the major signs of inflammation, including augmen-
ted pain sensitivity (Tilley et al., 2001). Peripheral
inflammation increases prostanoid levels at the site of
inflammation, and this local release contributes di-
rectly to inflammation and pain. More recently,
peripheral inflammation has also been shown to
increase central prostanoid levels (Dirig & Yaksh,
1999; Vanegas & Schaible, 2001). Constitutive pro-
duction of prostanoids is normally low, but can be
increased within minutes by inflammatory stimuli
acting on constitutively expressed prostanoid syn-
thetic enzymes (Funk, 2001). Pro-inflammatory sig-
nals trigger multiple transcriptional and post-
translational changes that alter the synthetic enzyme
levels and activity, and this leads to early, massive,
and sustained increases in prostanoid levels (Samad
et al., 2003).
In tendons from patients with patellar tendinopa-

thy, both the tendon tissue itself and harvested cells
express higher levels of COX-2 and PGE2 than do
healthy control patellar tendons (Fu et al., 2002).
Human microdialysis studies have shown that

peritendinous pro-inflammatory agents like PGE2

(Langberg et al., 1999a, b), IL-6 (Langberg et al.,
2002), and thromboxane B2 (Langberg et al., 1999a)
are increased after exercise, indicating that the pro-
duction is local (Langberg et al., 1999a, b), and
that peritendinous pro-inflammatory agents like
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PGE2 are increased 50% in patients with chronic
tendinopathy compared with normal tendons
(Alfredson et al., 1999, 2001b), although the differ-
ences were not significant in this very small study of
only four patients.
The nociceptive substance P (SP) and calcitonin

gene-related peptide (CGRP) positive nerve fibers
are significantly increased in chronic tendinopathy
(Forsgren et al., 2005; Schubert et al., 2005).
Using microdialysis techniques, Alfredson et al.

(1999) found a high level of the excitatory neuro-
transmitter glutamate in tendons from patients
with Achilles tendinopathy [and the occurrence of
glutamate N-methyl-D-aspartate receptors (Alfredson
et al., 2001a)].
Neuropeptides have been found to exert trophic

effects in different tissues in addition to their noci-
ceptive and pro-inflammatory actions (Strand et al.,
1991; Schwartz, 1992; Hökfelt et al., 2000). SP and
CGRP, representing the sensory system, participate
in the regulation of fibroblast and synoviocyte
proliferation and of angiogenesis (Brain et al.,
1985; Haegerstrand et al., 1990). They have also
been implicated in the synthesis and release of
cytokines and growth factors (Broome & Miyan,
2000; Monneret et al., 2000). SP upregulates COX
2 and IL-b in the peritendon (Hart et al., 1998).
Neurogenic inflammation could initiate peritendini-
tis, with both SP and GCRP implicated in this
pathway (Hart et al., 1998), and long-term periten-
dinitis can lead to degenerative changes in the tendon
(Sullo et al., 2001).
In nociception, CGRP potentiates the effects of

SP (Wiesenfeld-Hallina et al., 1984). Galanin, also
occurring in primary afferents, has been shown to
mitigate nociception and inflammation (Heppelmann
et al., 2000).
SP and CGRP have a stimulatory role in the

proliferation of cultured fibroblasts (Nilsson et al.,
1985). SP and CGRP are also known to stimulate the
proliferation of endothelial cells (Nilsson et al., 1985;
Haegerstrand et al., 1990; Ziche et al., 1990).
Not only is the level of SP increased significantly in

chronic tendinopathy, but SP is also increased in the
synovial fluid in a typical inflammatory disease like
rheumatoid arthritis (RA) (Westermark et al., 2001).
The synovial fibroblast in RA can produce SP (Inoue
et al., 2001), and neuropeptides have been shown
to modulate immune function directly through ex-
pressed receptors and undergo distinct alteration in
RA (Sedo et al., 2005).
It is known that the neuroendocrine, immunologic,

and microvascular systems interact in RA (Masi et al.,
1999; Hernanz et al., 2003; Sedo et al., 2005) thus, it is
an obvious conclusion that the same could be seen in
tendinopathy. Some of the mechanisms in tendinopa-
thy and inflammatory RA seem to be the same.

In a recent study (Danielson et al., 2006b), an
upregulation of the cholinergic system was found
concerning levels of expression of the muscarin
receptors M2 and choline acetyltransferrase in tendi-
nopathy, and the tenocytes were suggested to be a
source of acetylcholinesterase production. It is
known that cytokines can induce upregulation of
the M2 receptors (Ebriques de Salamanca et al.,
2005). Thus, non-neural acetylcholinesterase produc-
tion may have effects on immune function, cell
proliferation and differentiation, and several other
basic cell functions (Wessler et al., 2001).
In contrast, in a study using cDNA arrays and

real-time PCR (Alfredson et al., 2003a) on biopsies
from tendons with tendinopathy, Alfredson found
that the mRNA for several cytokines and cytokines
receptors was not upregulated in Achilles tendino-
pathy. Based on the findings in these tendon biopsies,
Alfredson concluded that there is no chemical in-
flammation involved in the chronic stage of tendino-
pathy, but there could be a neurogenic inflammation
involving neuropeptides like SP and CGRP. How-
ever, there was a mixture of all cell types in the
biopsies, and consequently, a theoretically possible,
isolated upregulation of fibroblast or endothelial
cells could have been missed.

Pain mechanism

The pain mechanism is partly unknown. Traditional
theories state that pain arises through inflammation
or due to separation of collagen fibers in more severe
forms of tendinopathy. Other theories include
biochemical stimulation of the nociceptors due to
extravasation of glucosaminoglycans, especially
chondroitin sulfates (Benazzo et al., 1996; Khan
et al., 1996; Jòzsa & Kannus, 1997) and other
biochemical irritants. In biopsies from athletes with
patellar tendinopathy, Danielson et al. (2006b) re-
cently found that tenocytes produce acetylcholine and
that nerve fibers showing immunoreactions for the
acetylcholine-receptor M2 were observed in associa-
tion with the small blood vessels in tendinopathy.
Prostaglandins, prostacyclins, and thromboxanes

(prostanoids) contribute to the development of pain
by acting both peripherally and centrally. Peripher-
ally, they play a major role in generating peripheral
sensitization by increasing the sensitivity of the
peripheral terminals of high-threshold pain fibers
(nociceptors). They increase excitability, reduce the
pain threshold, and potentiate the action of pain-
producing stimuli, such as heat or irritant molecules
like bradykinin (Khasar et al., 1998; Gold, 1999).
Currently, investigations are increasingly focused

on the nerve supply to the tendons. Neuropeptide-
containing nerve fibers have both afferent and effer-
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ent roles with respect to bone cell regulation, and
they may be involved in the healing of tendons and
fractures. The nerve fibers are mainly located in the
periosteum, synovium, the fat pad (Witonski &
Wagrowska-Danielewicz, 1997), and the loose peri-
tendinous connective tissue. However, nerve in-
growth is known to occur as a response to tendon
injury (Ackermann et al., 2002), and a number of
studies have demonstrated new nerve ingrowth in the
tendon proper in tendinopathy (Schubert et al., 2005;
Lian et al., 2006). In tendinopathy, nerve fibers
accompany the blood vessels into the tendon (Da-
nielson et al., 2006a). It has been suggested that these
nerves are a potential origin of the pain in tendino-
pathy (Alfredson et al., 2003b).
Free-sprouting SP and CGRP fibers are found

around newly formed blood vessels in ruptured
Achilles tendons, and Ackermann et al. (2003) de-
monstrated that the healing process in tendon in the
inflammatory and early proliferation phase of healing
(weeks 1–2) is associated with new nerve ingrowth
and a specific temporal pattern of neuropeptide
occurrence. The rate of change in peripheral neuro-
peptides occurrence is related to nociceptive thres-
holds, which presumably reflect a regulatory role in
both nociception and tissue repair. This was followed
by nerve fiber withdrawal (weeks 6–12) from the
tendon tissue. It is however, well known that the
pain continues even during weeks 6–12, as well as
afterwards. The level of the excitatory neurotransmit-
ter glutamate and the number of nociceptive SP and
CGRP positive nerve fibers are also known to be
significantly increased in chronic tendinopathy (Al-
fredson et al., 2001a; Forsgren et al., 2005; Schubert
et al., 2005) in both vessels and nerve fascicles,
indicating that the peptides not only have an effect
in relation to blood flow regulation but could also
have effects within the nerve fascicles.
Acetylcholinesterase may have an effect on sensory

nerve fibers, and in this way, the acetylcholinesterase
in non-neural cells may play a role in modulating
peripheral nociception (Weiss et al., 2003).
Why glucocorticoids have the same dramatic clin-

ical effect on pain and hyperemia in tendinopathy as
they do in RA (Terslev et al., 2003; Koenig et al.,
2004) is still partly unknown, but many of the same
pro-inflammatory agents are found in both diseases.
It has been postulated that the dramatic reduction in
tendon thickness (and maybe the pain) after steroid
treatment is due to glucocorticoid reducing the water
content in the tendons. However, in an experimental
animal study (Sullo et al., 2001), the intratendinous
water in PGE1-induced tendinopathy was close to the
water content of the normal control tendons. This
animal study does not indicate that the considerable
reduction in the tendon thickness and pain 1 week
after steroid injection (Fredberg et al., 2004) is due to

a reduction in water content. In biopsies from
Achilles tendinopathy tendons and normal tendons,
water content was the highest in the tendinopathy
tendons (de Mos et al., 2007). The effect of gluco-
corticoids could theoretically be due to an analgesic
effect on the neuropeptides (CGRP and SP), which,
as mentioned above, are increased in tendinopathy,
but it seems unlikely that this could explain the
dramatic reduction in tendon thickness.
Glucocorticoids regulate vascular reactivity by

acting on both endothelial and vascular smooth
muscle cells. Glucocorticoid receptor protein and
mRNA have been identified in endothelial and vas-
cular smooth muscle cells. In endothelial cells, glu-
cocorticoids suppress the production of vasodilators,
such as prostacyclin and NO (Suzuki et al., 2003;
Yang & Zhans, 2004). Glucocorticoids are to some
extent vasoconstrictors, which may explain the
change in vascularity, and secondly, the reduction
in thickness and pain, due to a reduction in the
supply of different noxious stimuli and pro-inflam-
matory agents like PGE, cytokines, and neuropep-
tides, whose effects will further be reduced by
steroids.
Glucocorticoids are the most effective treatment in

tendinopathy with regard to reduction of pain,
tendon thickness (Fredberg et al., 2004), and neo-
vascularization. The effects when glucocorticoids are
injected around chronic tendinopathies and into
inflammatory joints of patients with RA, which is a
well-established inflammatory chronic disease, are
nearly the same. Because glucocorticoids do not
cure either tendinopathy or RA, the symptoms often
relapse in both diseases. The two diseases have many
symptoms in common (rubor, dolor, tumor, calor,
functio laesae), and because the clinical responses to
glucocorticoids in chronic tendinopathy and inflam-
matory RA are comparable, a conclusion that
immediately suggests itself is that the effect of
glucocorticoids in chronic tendinopathy is due to
their anti-inflammatory properties as in inflamma-
tory arthritis.

Etiology

The exact pathogenesis of chronic tendinopathy
remains largely unknown but seems to be a multi-
factorial process. The following are a wide range of
suggested intrinsic and extrinsic etiological factors
that are assumed to be the mechanisms of tendino-
pathy (Williams, 1986; Murphy et al., 2003): age
[with decreased arterial blood flow with local hy-
poxia, less nutrition, impaired metabolism, and free
radicals (Archambault et al., 1995; Langberg et al.,
2001; Kettunen et al., 2006)]; vascular perfusion
[ischemia occurs when a tendon is under maximal

Fredberg & Stengaard-Pedersen

8



tensile load and microdialysis studies have demon-
strated high intratendinous concentrations of lactate
in chronic, painful Achilles tendons (Alfredson et al.,
2002) and on relaxion, reperfusion occurs, generating
oxygen free radicals (Goodship et al., 1994; Bestwick
& Maffulli, 2004)]; nutrition; exercise-induced hy-
perthermia (Arancia et al., 1989; Brich et al., 1997);
anatomic variants: various alignments such as Q-
angle, hyperpronation (Clement et al., 1984; Nigg,
2001), limited range of motion of the ankle joint
(Kvist, 1991), excessive motion of the hindfoot in the
frontal plane (Kaufman et al., 1999), especially a
lateral heel strike with compensatory pronation,
varus deformity of the forefoot (Clement et al.,
1984; Kvist, 1991), pes cavus, pes planus (Williams
et al., 2001), lateral ankle instability, leg-length dis-
crepancy (Kannus, 1997), impingement (Johnson
et al., 1996; Schmidt et al., 2002), and other biome-
chanical factors (Kvist, 1994); muscle weakness/im-
balance (Wityrouw et al., 2001; Mahieu et al., 2006);
increased tightness of the gastrocnemius (Kaufman
et al., 1999): physical load (sport/occupation); exces-
sive force; repetitive loading; abnormal/unusual
movement; poor technique; training errors: fast pro-
gression and high intensity; fatigue; shoes and equip-
ment; environmental conditions; temperature and
running surface (Kvist, 1991); gender (Kannus,
1997); genetic (Józsa et al., 1989; Kannus & Natri,
1997; Mokone et al., 2005, 2006) and genetically
determined collagen abnormalities; infectious dis-
ease; neurological conditions; hyperparathyroidism
(Preston, 1972); hypertension (Holmes & Lin, 2006);
body weight (Holmes & Lin, 2006); increased serum
lipid (Qzgurtas et al., 2003); glycogen storage disease
(Carvès et al., 2003); systemic disease/treatment
[direct injection of corticosteroids (Shrier et al.,
1996; Fredberg, 1997)]; systemic corticosteroid
(Newham et al., 1991; Khurana et al., 2002); oral
contraceptives (Holmes & Lin, 2006); fluoroquino-
lones (Malaguti et al., 2001; Chhajed et al., 2002); RA
(Peiro et al., 1975); psoriasis (Aydingöz & Aydingöz,
2002); systemic lupus erythematosus (Pritchard &
Berney, 1989; Jakobsen et al., 2000); chronic renal
failure (Kricun & Kricun, 1980); hyperuricemia (Hof-
mann et al., 1990); hyperthyroidism; arteriosclerosis;
and diabetes mellitus (Webb & Bannister, 1999;
Holmes & Lin, 2006).
The scientific background for most of these sug-

gestions is lacking, and they must to be characterized
as non-proven theories, and, above all, their clinical
importance is not well known.
The traditional view of tendinopathy is a tendon

injury associated with overuse (Curwin, 1994; Arch-
ambault et al., 1995; Jòzsa & Kannus, 1997) from
repetitive mechanical load, microtears, and acute and
then chronic phases of inflammatory ‘‘tendinitis’’
that lead to tendon degeneration, despite these con-

ditions also being seen in physically inactive indivi-
duals (Movin, 1998; Alfredson & Lorentzon, 2000).
At the moment, the mechanical strain theory is the
most accepted theory to explain the injury mecha-
nisms of tendon overload injuries (Stanish et al., 1985;
Archambault et al., 1995; Khan et al., 1999): repeated
heavy loading may produce initial pathological
changes in either the extracellular matrix or the cellular
components of a tendon. When the load exceeds the
tendon’s strength (resistance), the progressive damage
(the basal ability of the tissue to repair itself after being
overwhelmed by the repetitive microtraumatic process)
may lead to the structure of the tendon being disrupted
micro- and macroscopically by this repetitive strain
(often eccentric by nature), and collagen fibers begin to
slide past one another (causing breakage of their cross-
linked structure) and denature (with inflammation
edema and pain), causing a focal area of intratendi-
nous degeneration, partial tears, and complete rup-
tures (Jòzsa & Kannus, 1997; Kannus, 1997). The
cumulative trauma is thought to weaken collagen
cross-linking and the non-collagenous matrix and
vascular elements of the tendon, and finally leads to
tendinopathy.
It is highly probable that overload exercise plays a

decisive role in tendinopathy because the lifetime
cumulative incidence of Achilles tendinopathy is
nearly 10 times higher among elite endurance athletes
than among sedentary people (Kujala et al., 2005).
Moreover, exercise has important modulatory effects
on immunocyte dynamics and possibly on the im-
mune function. These effects are mediated by diverse
factors, including, among others, exercise-induced
release of classical stress hormones, hemodynamic
effects involving cell distribution (Pedersen & Hoff-
mann-Goetz, 2000), and release of a soup of pro-
inflammatory mediators, as for example, cytokines
(which can be detected in plasma and urine during
and after exercise) (Ostrowski et al., 1999), prosta-
glandins, and neuropeptides (Lind et al., 1996; Hasbak
et al., 2002; Karahan et al., 2002). The tendon and
endothelial cells seem to be able to produce most of
these mediators.
Animal studies support both the overload theory

and the notion that cytokines and prostaglandins
play a role in the etiology of tendinopathy. Backman
et al. (1990) demonstrated that exercised rabbits
showed light microscopic degenerative changes in
tendons and increased numbers of capillaries, infil-
trates of inflammatory cells, edema, and fibrosis in
the paratenon.
In animal studies, injections of collagenase, cyto-

kines, and inflammatory prostaglandins (PGE2),
which, as mentioned above, are increased in exercise,
have been shown to cause tendinitis and tendinosis
(Stone et al., 1999; Sullo et al., 2001; Cilli et al., 2004;
Khan et al., 2005).
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Some people may have a genetic predisposition
toward developing tendinopathies (Mokone et al.,
2005, 2006), which may explain why many patients
with tendinopathies do not go in for sport.
Most Achilles tendon ruptures occur without

warning symptoms, but in nearly all the ruptured
tendons, degenerative changes can be demonstrated
(Kannus & Józsa, 1991), and several studies show
ultrasonographic abnormalities in patellar tendons
of asymptomatic athletes playing volleyball, basket-
ball, soccer, and track and field athletes (Gibbon
et al., 1999; Cook et al., 2000; Fredberg & Bolvig,
2002; Major & Helm, 2002; Maffulli et al., 2003).
Even severe tendinopathies are asymptomatic for
long periods. Thus, chronic tendinopathy can be
compared with an iceberg, pain being the tip of the
iceberg (see Fig. 2).
This ‘‘iceberg theory’’ can explain the frequent

relapse of symptoms when athletes resume the sport
activity after too short a rehabilitation period, during
which pain recedes to just below the detection thresh-
old while most of the intratendinous abnormalities in
the tendon still exist.
A study (Fredberg & Bolvig, 2002) showed that

US can identify these asymptomatic athletes who
have an increased risk of developing serious tendon
injuries in the future.

Conclusion

Even in experienced hands, the diagnosis of tendino-
pathy is not straightforward, and experienced exam-
iners may have problems in reproducing the results
of clinical examination based on simple tests. There-
fore, the diagnosis should be verified by US, which is
a more accurate modality than MRI in confirming
clinically diagnosed tendinopathy (Warden et al.,
2007).
Overuse is crucial in the development of tendino-

pathy in individuals who, perhaps because of extrin-

sic and intrinsic (including genetic) factors, are
predisposed.
It seems plausible that tendons have a baseline

mechanical strength, which depends on the loading
history of the tendon (training level). Once a rapid
increase in training load, frequency, or duration
occurs, the tendon may not be able to adapt fast
enough to these changes. The mechanical strength of
the tendon may be exceeded, and a small injury may
occur. Under normal circumstances, this small injury
will heal as a normal part of tendon remodeling, but
if the training and overloading continues, these small
injuries result in progressive tendon changes that,
after an asymptomatic period of several months,
slowly aggravate and finally reach the pain limit
and become symptomatic (see Fig. 2).
It seems plausible that tendinopathy begins with

cellular activation and inflammation and proceeds
through phases of increased ground substance, col-
lagen separations, and eventually neovascularization,
and that the corticosteroid-sensitive mechanisms
play a crucial role in this process.
Virtually every study of the pathology Achilles and

patellar tendinopathy has reported that there are
more conspicuous and more numerous cells than in
healthy tendons and inflammatory cells are absent.
Two newer studies, in which immunohistochemical
staining and monoclonal antibodies were used for
detection of T and B lymphocytes and macrophages,
confirmed the presence of inflammation in both
ruptured and non-ruptured chronic Achilles tendi-
nopathies.
The existing data indicate that the initiators of the

tendinopathic pathway include traumatic events, or a
prolonged repetitive motion injury induces the pro-
duction of many pro-inflammatory agents (including
cytokines such as IL-1-b, prostaglandins such as
PGE2, NO, different growth factors, and neurope-
tides). The pro-inflammatory mediators induce apop-
tosis, elaboration of pain mediators, and MMP,
which degrade collagens and proteoglycans. The
end result is a weak tendon with an increased risk
of ruptures. The tendon cells can produce these
agents when subjected to cyclic stress, and in animal
studies these inflammatory agents can be used
to produce experimental chronic tendinopathy.
Furthermore, many of the pro-inflammatory media-
tors and neuropeptides are also found in chronic
tendinopathy. Because of the complex interaction
between the pro-inflammatory agents and the neuro-
peptides, it seems impossible and partly irrelevant to
distinguish sharply between chemical and neurogenic
inflammation.
This review indicates – without definitive proof –

that an inflammatory process may be related to the
development of tendinopathy and that the inflamma-
tion may also play a role in chronic tendinopathy.

Pain detection threshold 

Time

Load induced tendon abnormalities

Symptoms 

No symptoms 

Fig. 2. The tendinopathic ‘‘iceberg.’’
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The major questions for the future are therefore:
is it advantageous to block this inflammatory
cascade, and what is the most effective way to
block it with the smallest possible number of side
effects?

More attention should be directed toward the
tendinitis myth in the future.

Key words: tendonitis, tendinosis, tendinitis, tendino-
pathy, Achilles tendon.
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